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Abstract Light energy is necessary for vision, but ocular
tissues are subject to photodamage, and many verte-
brates sequester UV-absorbant pigments in their pre-
retinal ocular tissues, in part to minimize such damage.
In this study (21 May-1 July 2001), juvenile scalloped
hammerhead sharks, Sphyrna lewini (Griffith and Smith,
1834), were exposed to higher levels of solar radiation
than they had previously experienced in the source
habitat in the turbid waters of Kane’ohe Bay, Hawai’i,
USA. Light transmission through the ocular media was
measured in two individuals shortly after capture and in
other individuals after 7, 14, 20, 27, and 41 days expo-
sure to high light levels in a shallow, outdoor pen.
Sharks from their usual habitat filtered a small propor-
tion of the UV spectrum, but sharks exposed to greater
solar radiation showed increased UV blocking in their
corneal tissues, particularly at wavelengths below
310 nm. The proportion of UV blocked was relative to
the duration of exposure. There were no changes at-
tributable to exposure duration in transmission through
the whole eye or lens, nor was there any clear pattern to
variation in transmission through dorsal, ventral, ante-
rior, and posterior quadrants of the cornea. Further
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experiments will be needed to confirm that this appar-
ently rapid corneal adaptation to high light was due to
the increased UV exposure.

Introduction

Short-wavelength solar radiation in the ultraviolet range
(UV, 280-400 nm) has well-documented deleterious ef-
fects on aquatic organisms (Zagarese and Williamson
2001), including free radical formation (Lesser et al.
2001), DNA damage (Vetter et al. 1999), epithelial le-
sions (Bullock 1988; Blazer et al. 1997), and cataract
formation (Doughty et al. 1997). Adaptive mechanisms
can be divided into behavioral means (e.g. habitat
selection, Lowe and Goodman-Lowe 1996; Cockell and
Knowland 1999), changeable corneal coloration (Kon-
drashev et al. 1986; Siebeck and Marshall 2000), pupil
control (Gilbert et al. 1981), accumulation of blocking
compounds (Lowe and Goodman-Lowe 1996; Zamzow
and Losey 2002), and damage repair (Vetter et al. 1999).
Mycosporine-like amino acids (MAAs) and several
other compounds found in pre-retinal ocular tissues of
fishes appear to aid in filtering high-energy, short-
wavelength light (reviewed by Douglas and Marshall
1999). Douglas and Marshall (1999) observed that
*...since ocular filters are usually found in animals living
in high light levels, it is possible that they are the direct
result of light exposure,” and reported that goldfish
raised under extreme high and low light conditions in the
laboratory showed correspondingly high and low
quantities of corneal pigmentation. However, Zamzow
and Losey (2002) reported no effect of differential UV
exposure on the ocular transmission of the teleost fish
Thalassoma duperrey under quasi-natural conditions.
Here, we describe the effects of solar radiation exposure
on pre-retinal ocular transmission in juvenile scalloped
hammerhead sharks, Sphyrna lewini.

Kane’ohe Bay, Oahu (Hawai’i; 21°30'N; 157°45’"W) is
a nursery ground for hammerhead shark pups (Clarke
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1971). Kane’ohe Bay has a flat, silty bottom (8-15 m
depth), interspersed with patch reefs extending to <1 m
of the surface. The pups are born and spend the early
part of their life in the deep (~15 m), turbid waters of
the bay (Holland et al. 1993), while the adults are pel-
agic, occupying clear, oceanic waters (Compagno 1984)
where they are potentially exposed to higher levels of
UV radiation. Although quantities of light with wave-
lengths <400 nm penetrate clear, oceanic waters, these
wavelengths attenuate quickly in turbid, coastal water
(reviews by Jerlov 1976; Loew and McFarland 1990).
Lowe and Goodman-Lowe (1996) report light mea-
surements taken near midday under clear skies in Ka-
ne’ohe Bay (shallow measurements within the enclosure
referred to below), and found that levels of UVR were
600 times greater at the depth of 1 m than at 15 m.

There has been comparatively little investigation into
mechanisms for reducing the harmful effects of UV ra-
diation in aquatic vertebrates. In fishes, filtration of
short-wavelength light may occur within the cornea,
humor, lens, or retina, with the final combination of
filtration varying considerably among fish species
(Douglas and Marshall 1999; Siebeck and Marshall
2001; Nelson et al. 2002; Losey et al., unpublished data).
There is strong evidence that fishes exposed to natural
levels of solar radiation, but prevented from regulating
their exposure by behavioral means, suffer UV-induced
damage (Bullock 1988; Zagarese and Williamson 2001),
including damage to their visual systems. Teleost fishes
such as labroids, tetraodontids, and hexagrammids
possess corneas with spatially and/or temporally heter-
ogeneous pigmentation (Kondrashev et al. 1986; Siebeck
and Marshall 2000). Although the explanations for this
observation remain speculative, these pigmentation
patterns may be related in part to differences in the
varying intensities of downwelling, sidewelling, and up-
welling light (see also Lythgoe and Shand 1989).

We compared the transmission of light through the
whole eye, lens, and cornea in juvenile scalloped ham-
merhead sharks (Sphyrna lewini) held for varying peri-
ods of time in shallow water with high levels of UV
radiation. We also tested the hypothesis that spatial
heterogeneity in corneal pigmentation would vary with
exposure to solar radiation.

Materials and methods

Between 21 May and 1 July 2001, we captured 11 juvenile scalloped
hammerheads, Sphyrna lewini (Griffith and Smith, 1834), by hand-
line fishing in Kane’ohe Bay, Hawai’i, USA. Three males and eight
females ranged in size from 39.0 to 44.3 cm fork length (42.5 mean,
+1.7 SD) and represented young-of-the-year and juveniles
<2 years old. Nine sharks were placed in a shallow (<2 m), out-
door holding pen at the Hawai’i Institute of Marine Biology
(HIMB) immediately after capture, and held for 741 days (Fig. 1).
Two sharks were sampled immediately upon capture (1 July 2001)
from the deeper waters (~15 m) of the bay. The clear, shallow
water of the holding pen was exposed to quantities of UV radiation
significantly greater than the turbid channels in deeper portions
of the bay from which the sharks were captured (Lowe and
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Fig. 1 Daily (dotted) and cumulative (dashed) above-surface
measurements from the Eppley total ultraviolet radiometer at the
HIMB weather station (Hawai’i Institute of Marine Biology,
Kane’ohe, Hawai’i). Arrows represent capture, exposure, and
sample dates (two sharks for each event, except for the period, 21
May-1 July 2001, where one shark was used). The open square
represents capture and sample date for two sharks

Goodman-Lowe 1996). While daily total UVR varied considerably
during the duration of the study, there was a close correlation
between the duration of exposure and the cumulative UVR (Fig. 1;
r=0.998, Z=9.40, P<0.0001). Sharks were fed to satiation three
times per week on a diet of squid, mackerel, and herring. At in-
tervals, sharks were removed from the holding pen at ~1200 hours,
and euthanized immediately with an overdose of MS-222.

After dissecting the left eye from each euthanized shark, we
measured light transmission through the pre-retinal ocular media
(whole eye, lens, and cornea) as in Losey et al. (2000). Briefly, (1) a
small hole was cut through the sclera opposite the pupil and near
the optic nerve; (2) the eye was mounted on an aluminum slide with
the pupil over a 1.4 cm hole in the middle of the slide; (3) using a
UV-transmitting 400 um fiber optic probe mounted on a mi-
cromanipulator, we introduced light from a DT 1000 light source
(range: ~200 to 750 nm) into the hole in the back of the eye; (4)
light exiting the fiber optic probe and passing through the humors,
lens, and cornea was measured using a collecting lens on the end of
another fiber optic probe leading to an Ocean Optics S2000 spec-
trophotometer; (5) after measuring transmission through the whole
eye, we measured transmission through the center of the isolated
lens and the isolated cornea in a similar manner. We used an av-
erage of three scans for each transmission measurement, normal-
ized these to 100% at the highest value below 501 nm, and
identified the wavelength at which transmission reached 50% (7o,
Douglas 1989) for each eye, lens, and cornea.

To test the hypothesis that exposure to solar radiation would
effect a detectable change in intra-ocular filtering, we compared
transmission data from freshly caught sharks to individuals held in
shallow water for 7-41 days. We compared the 7’5o values for the
whole eye, lens, and cornea with both the duration of exposure (in
days) and the total exposure to the UV component of the solar
radiation (in mJ m™2 295-389 nm) using linear regression. UV
irradiance data were obtained from the Eppley total ultraviolet
radiometer at the HIMB weather station and represent above-
surface measures of total irradiation (mean = SD: 0.050 £+ 0.009 mJ
m 2 day!); thus the sharks experienced less actual radiation than
reported, but the relative treatment is valid.

We also tested the hypothesis that corneal filtration in the
hammerheads would be spatially heterogeneous in sharks exposed
to increased solar radiation. We measured transmission as
described above for each of four quadrants (dorsal, ventral, ante-
rior, posterior) of the corneas taken from seven sharks, and com-
pared the means using ANOVA. To test the hypothesis that the
difference between the dorsal and ventral quadrants of the cornea



changed as a function of radiation exposure, we compared the
duration of exposure (in days) to the ratio of the dorsal quadrant
Tso to the ventral quadrant T, using linear regression.

All procedures were conducted in accordance with University of
Hawai’i IACUC protocol 95-012.

Results and discussion

Because the duration of exposure and the accumulated
UV radiation were so tightly correlated, results using
either measure (days or mJ m2) are identical and we
report only the results using duration of exposure (days).
The quantity of short-wavelength light filtered by the
corneas was positively and significantly correlated with
the length of exposure (R>=0.58, F.9=12.64, P=0.01;
Fig. 2). No significant trends were observed for the
whole eye (R*=0.17, Fu=1.59, P=0.24) or the lens
(R*=0.23, Fi.9y=2.71, P=0.13). Transmission through
the dorsal, ventral, anterior, and posterior quadrants of
the seven corneas tested were not significantly different
(F3,17)=0.090, P=0.96, Fig. 3). The ratios describing
the relative difference in transmission between dorsal
and ventral quadrants also failed to support our
hypothesis that the relative difference between these
quadrants would change as a function of radiation
exposure (R*=0.045, F;.5=0.236, P=0.65).

While the lens remained the limiting factor deter-
mining light transmission through the pre-retinal tissues
(Fig. 4), the cornea, at least in this species, changed
rapidly in response to environmental conditions. Sharks
held in shallow water and exposed to solar radiation
increased corneal filtration of short-wavelength light; the
juvenile hammerheads occupying the turbid waters of
the bay channels are less exposed to UV radiation and,
thus, have little need for short-wavelength ocular filtra-
tion. The corneas observed in this study showed maxi-
mal absorbance (4y,x) around 273 nm, well below that
of the MAAs or gadusol, a compound structurally
similar to MAAs and found in some fish eggs (Cockell
and Knowland 1999). Melanin, a pigment known to
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Fig. 2 Sphyrna lewini. Wavelength at which transmission was
reduced to 50% (7T'sp) for the cornea, lens, and whole eye relative to
duration of exposure
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increase in dermal concentration in response to UV ra-
diation (Lowe and Goodman-Lowe 1996), shows a more
variable absorbance profile with 4,,,,=260 nm (Cockell
and Knowland 1999). The identity of the pigment(s)
responsible for short-wavelength filtration in hammer-
head shark corneas remains to be determined. It is also
unclear whether the putative changes in corneal 7’5o were
due to increased pigment concentration or the acquisi-
tion of new pigments.

The observed increase in corneal filtration (296—
306 nm) probably protects the lens from exposure to the
shortest, most-damaging UV wavelengths that are
known to cause cataracts (e.g. Zigman 1995). There are
additional potential advantages to short-wavelength fil-
tration, including reduced chromatic aberration or fine
focusing ability (Douglas and Marshall 1999) and im-
proved color constancy (Douglas and Marshall 1999;
Dyer 2001), but it is difficult to see how these adapta-
tions would drive the rapid changes observed in this
study since the distribution of wavelengths reaching the
retina was not altered by the corneal absorption.
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While we observed no obvious aphakic spaces (these
sharks were euthanized in full sun with their pupil di-
lation likely near their minimum), the pupillary aperture
is elongate and it is possible that an aphakic gap exists
under reduced light conditions. In such an instance,
corneal short-wavelength filtration would provide some
protection to the retina from light thus by-passing the
lens. We cannot rule out the possibility that change in
ocular transmission occurred as a result of diet or some
other environmental factor associated with husbandry.
Available evidence suggests that, for teleost fishes, the
source of MAAs is dietary (Mason et al. 1998; Zamzow
and Losey 2002), and the food supplied to the captive
hammerheads was necessarily different from in the field,
namely small fishes (Perciformes: Gobiidae, Scaridae)
and crustaceans (Natantia: Alpheidae; Clarke 1971).
Clearly this warrants further investigation by controlling
the diet. Moreover, some individuals should be held in a
shaded environment, under photic conditions matching
their usual environment.
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